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Abstract 
In this work, the ascent of a toroidal bubble created by the injection of a pulsed air jet into 

water vertically upwards is studied by the shadow method. When using the shadow method, 
the bubble border on the image is darkened, and the contrast in comparison with the back-
ground is increased, which makes it possible to use software processing algorithms to deter-
mine the parameters of the ring on each frame. There are experimental results indicating 
that, in addition to the buoyancy force, the drag force also acts on the toroidal bubble. In this 
paper, the experimental data on the change in the torus radius as a function of time are com-
pared with a theoretical model constructed with and without taking into account the drag 
force. It is shown that taking into account the drag force leads to a much better agreement be-
tween theory and experiment. The drag force is concluded to act on toroidal bubbles, but its 
influence decreases with time, i.e., as the bubble rises. The drag coefficient used in the calcu-
lations is determined empirically and assumed to be constant.  
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1. Introduction 
A toroidal bubble is a type of buoyant vortex rings moving in a liquid, where gas is used as 

a buoyant substance [1-3]. A distinctive feature of buoyant vortex rings compared to homoge-
neous ones is the presence of a buoyant force acting on them, which has a significant effect on 
their dynamics. A large number of works have been devoted to homogeneous vortex rings, 
where various optical methods are actively used. Thus, the use of optical velocimetry made it 
possible to study in detail the structure of vortex rings, especially inside the core [4–6]. By 
PIV method the presence of a vortex ring has been established during direct fuel injection in 
internal combustion engines [7]. The general state of the human heart was shown in [8] to 
depend on whether the vortex ring is formed as a result of left ventricle diastole of the heart. 
Much less attention has been paid to inhomogeneous vortex rings [9–11], including toroidal 
bubbles. The regularities obtained for toroidal bubbles can be attributed to inhomogeneous 
vortex rings, although they have distinctive features. One of them is the gas mass conserva-
tion, which, under the action of centrifugal forces, is concentrated near the torus circular axis. 
The peculiar ring structure of toroidal bubbles, together with the rotation of the liquid around 
the torus, could possibly be useful for intensifying the gas-liquid mass transfer [12], which is 
encountered in many industrial applications, such as the removal of harmful gases and the 
capture of 𝐶𝑂2. However, the calculation of the bubble parameters as a function of time ac-
cording to the available theoretical models [2, 11] does not fully agree with the experiment. 

As noted in [13], the dependence of the bubble radius on time, if the bubble is created by 
injecting an air jet into water, is greater than that obtained experimentally. This may indicate 
the presence of a drag force acting on the toroidal bubble. It is known that the drag force act-
ing on a bubble in the form of a spherical segment leads to stabilization of its velocity [14, 15]. 
In the case of homogeneous vortex rings, the drag force does not significantly affect the mo-
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tion [16]. The question of the influence of drag on the dynamics of a toroidal bubble remains 
open. 

It should be noted that in [13] a model was proposed taking into account the drag force. 
However, no comparison with experiment was made, and the calculation of the drag coeffi-
cient was performed for only one bubble volume. Thus, the main goal of this study is to test 
the theoretical model taking into account the drag force, as well as to determine the values of 
the empirical drag coefficient included into the model for toroidal bubbles with different ini-
tial parameters. 

2. Theoretical model 
The model applied in this paper considers a toroidal bubble rising vertically upward in a 

gravitational field. The following assumptions are introduced: the bubble has the shape of a 
torus with parameters 𝑅 and 𝑎, 𝑅 is the radius of the torus, 𝑎 is the radius of the cross section 
of the torus, and 𝑎 << 𝑅; the flow around the bubble is irrotational with constant circulation 
𝛤; the volume of the torus is constant and equal to 𝑊. According to the assumptions made, 
the expressions obtained in [2, 17] for the vortex momentum 𝑃 and the rise velocity 𝑉 are 
used: 

𝑃 = 𝜋𝜌𝛤𝑅2, (1.1) 

 

(1.2) 

where 𝜌 is the density of the surrounding liquid. 
The differential equation, which can be used to obtain the time dependence of the radius 

of a toroidal bubble, is derived from the dynamic equation of motion, where, similarly to [13], 
along with the buoyancy force, the drag force is taken into account in the form: 

𝑑𝑃

𝑑𝑡
= −𝐶𝑑2𝜋𝜌𝑎𝑅𝑉2 + 𝜌𝑔𝑊 (1.3) 

where 𝐶𝑑 is the drag coefficient. 
Without drag force, that is, with 𝐶𝑑 = 0, from equation (1.3) it is easy to obtain the de-

pendence of the bubble radius on time: 

𝑅 = (𝑅0
2 +

𝐹

𝜋Г
𝑡)

1
2

, (1.4) 

which is also applicable for inhomogeneous vortex rings with a small density difference be-
tween the ring and the environment [11]. In this study, formula (1.4) is used to compare mod-
els with and without taking into account the drag force with the experiment. 

The length, time, and circulation parameters used below are dimensionless on 𝑟0, (𝑟0/
𝑔)1/2, (𝑔𝑟0

3)1/2 respectively, where 𝑟0 is equal to the radius of the ideal sphere containing the 
same volume of air as a toroidal bubble. 

In dimensionless variables, the Cauchy problem with respect to equation (1.3), taking into 
account (1.1), (1.2) and the constant volume of the bubble 𝑊 = 2𝜋𝑎2𝑅  , takes the form: 
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where 𝐶1 =
√6𝛤𝐶𝑑

(48𝜋2√𝜋)
, 𝐶2 = 4√6𝜋, 𝐶3 =

2

(3𝛤)
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Figure 1. Toroidal bubble ascent, t and z are dimensionless (Г = 6,7; 𝑊 = 47 𝑐𝑚3). 

3. Experimental setup 
The experiments were carried out in a water-filled Plexiglas tank 0.5 m long, 0.5 m wide 

and 1.5 m high. The method for generating toroidal bubbles is as follows. First, compressed 
air, passing through the pressure regulator, was supplied to the solenoid valve. The open time 
of the solenoid valve was determined by a programmable logic controller. Moving on, the 
compressed air flow passed through a mechanical valve, where, pushing the cup against the 
spring tension, it was injected into the tank. The diameter of the mechanical valve nozzle was 
0.4 cm. After injection, the bubble acquired a toroidal shape during the ascent. In the upper 
part of the tank, the toroidal bubble was captured by a funnel-shaped device for determining 
the volume of air W. This method for determining the volume allows us to avoid errors asso-
ciated with perturbations of the bubble surface during formation and movement compared to 
measurements from images. The volume measurement accuracy is 0.75 ml, which made it 
possible to measure the volume with an accuracy of 10% for the smallest volume to 1.1% for 
the largest. The volume of released air was regulated by the pressure of compressed air 𝑃 and 
the duration of the open state of the solenoid valve. The pressure took values of 3, 4, 5 and 6 
bar, the duration of the open state of the electromagnetic valve varied from 14 to 50 ms. The 
distance from the nozzle to the lower edge of the funnel-shaped device was 1 m. In the exper-
iments, the volume varied from 7.3 to 70 𝑐𝑚3. 

4. Measuring of ring parameters from images 
The shadow registration of the toroidal bubble against the background of a light matte 

screen was carried out by a high-speed video camera in the direction perpendicular to the 
motion trajectory with a frequency of 60 fps, an exposure of 750 µs, and a resolution of 1504 
× 1128 pixels. When using the shadow method, the bubble border on the image is darkened, 
and the contrast in comparison with the background is increased, which allows using soft-
ware processing algorithms to determine the ring parameters on each frame. The resulting 
videos were processed frame by frame in the Matlab environment using a method similar to 
that developed earlier and presented in [18]. The main goal of the algorithm from [18] is to 
find a bubble among all objects in the image and determine the coordinates of the points be-
longing to it with high accuracy. Figure 1 shows the ring images combination as it moves, 
where the white lines mark the doubled maximum transverse size of the torus 𝑹′ found using 
the algorithm from [18] and its position along the 𝒛 axis. The 𝒛-coordinate of the bubble, cor-
responding to its traveled path from the nozzle, was measured as the arithmetic mean of the 
coordinates of the points lying on the bubble boundary. To determine the bubble radius 𝑹, 
first half of the maximum transverse size of the torus 𝑹′ was measured in the image. 

Then 𝑹 and 𝒂 are calculated in terms of 𝑹′ and 𝑾 by solving a system of two equations: 
𝟐𝝅𝟐𝑹𝒂𝟐 = 𝑾, 𝑹 + 𝒂 = 𝑹′. First, we define the boundaries of the range in which physically 



correct solutions lie. So, from geometrical considerations, the value of the main radius of the 
torus 𝑹 must be greater than the cross-sectional radius 𝒂, but less than the maximum cross-

sectional dimension 𝑹′, i.e. 𝒂 =
𝑹′

𝟐
< 𝑹 < 𝑹′. Further, in order to find the only correct solu-

tion, we turn to the analysis of the function 𝒇(𝑹) = 𝟐𝝅𝟐𝑹(𝑹 − 𝑹′)𝟐 − 𝑽. The maximum point 

is located at 𝑹 =
𝑹′

𝟑
 and 𝒇 (

𝑹′

𝟑
) > 𝟎, and the minimum point is at 𝑹 = 𝑹′  and 𝒇(𝑹′) < 𝟎. Then 

according to the Bolzano-Cauchy theorem, there is a unique solution on the interval (
𝑹′

𝟑
, 𝑹′). 

Thus, the solution of the cubic equation for 𝑹 ∈ (
𝑹′

𝟐
, 𝑹′) is the required one. The measure-

ment error for 𝑹′ did not exceed 6%. The experimental rate of ascent 𝑽 is obtained as the ratio 
of the measured coordinates after a time interval of 1/12 to this interval. This interval is much 
shorter than the observation time and is sufficient to achieve a measurement accuracy of at 
least 7% and eliminate sharp fluctuations in the measured velocity. Having determined the 
experimental rate of rise and the dimensions of the toroidal bubble, the circulation was calcu-
lated from expression (1.2): 

𝛤 = 4𝜋𝑅𝑉 [𝑙𝑛(4√6𝜋𝑅√𝑅)) −
1

2
]

−1

 (1.6) 

Taking into account that the circulation does not change with time, its calculation was 
carried out at a reference point.  

The differential equation (1.5) is solvable for any value of the initial radius 𝑅0. Therefore, 
the reference point can be chosen at an arbitrary place where the bubble has a toroidal shape. 
In the experiments performed, the reference point was set at a distance of 15𝑟0 from the noz-
zle. At this distance, in all launches, the bubbles had the torus shape. 

Having obtained the dependence of the radius on time and the circulation for one bubble, 
an estimate of its drag coefficient can be found from the solution of equation (1.5) by compar-
ing the solution with the experimental dependence. Comparison of solutions with different 
coefficients 𝐶𝑑, which ranged from 0 to 1 with a step of 0.001, was carried out using the least 
squares method. The best result, that is, 𝐶𝑑 such that the discrepancy between solution (1.5) 
and the experiment was the smallest, was assumed to be the drag coefficient of the given 
bubble. Note that the proposed method does not provide information on the time dependence 
of the drag coefficient. 

  

 
Figure 2. (a) Dependence of radius on time (Г = 6,7; 𝑊 = 47 𝑐𝑚3): dashed line - calculation 

by formula (1.4), ∇ - experimental dependence. (b) Averaged over all experiments 

|𝑅𝑓𝑟𝑜𝑚  (1.4) −  𝑅𝑒𝑥𝑝 |/𝑅, where the dashed line is the average value at time equal to 𝑡, the con-

fidence interval of 95% is highlighted in color. 
  



 
Figure 3. (a) Dependence of radius on time (Г = 6,7; 𝑊 = 47 𝑐𝑚3): solid line - calculation by 

formula (1.5) with 𝐶𝑑 = 0,248, ∇ - experimental dependence. (b) Averaged over all experi-

ments |𝑅 𝑓𝑟𝑜𝑚 (1.5) −  𝑅𝑒𝑥𝑝 |/𝑅 with 𝐶𝑑, determined by the least squares method, where the 

dashed line is the average value at time equal to 𝑡, the confidence interval of 95% is highlight-
ed in color. 

5. Results and discussion 
Figures 2(a) and 3(a) show the characteristic experimental points of the core radius 

against time (∇), at 2(a) data calculated by formula (1.4) (dashed line), at 3(a) data calculated 
by formula (1.5) with 𝐶𝑑, found by the least square’s method (solid line) at Г = 6,7 and volume 
𝑊 = 47 𝑐𝑚3. It can be seen that the calculation by formula (1.4) lies above the experimental 
points, which was observed in all experiments performed. An estimate of the systematic devi-
ation of the calculation according to formulas (1.4) and (1.5) from the experimental points for 
all bubbles is plotted in figure 2(b) and 3(b). The y-axis shows the ratio of the modules of the 
difference between theory and experiment with respect to the experiment at the correspond-
ing time t. The density of points distribution at time t is presented through a 95% confidence 
interval, highlighted in color, where the dashed line means the average value of the relative 
deviation of theory from experiment. The limits of the confidence interval and the average 
value at time t were calculated from data from more than 100 bubbles. The comparatively 
large deviation at t from 0 to 25 relative to the later time is due to the error in determining 
the radii and the bubble boundaries fluctuation. With time t from 25 onwards, the average 
and maximum deviation in figure 2(b) is 8-9% and 12-13%, and in figure 3(b) is 0.5-1% and 2-
3%, respectively. Thus, including the drag with a constant 𝐶𝑑 in the model allows to increase 
the accuracy of the theoretical calculation several times. It should be noted that the drag coef-
ficient is only assumed to be constant, but in general, it may depend on time. However, taking 
into account this dependence will not significantly change the calculations accuracy. Since the 
term responsible for the drag in (1.5) decreases with increasing radius much faster than the 
buoyancy force. Figure 4 shows the calculated drag coefficients for the corresponding vol-
umes of toroidal bubbles (a) and Froude numbers (b). There is no clear correlation between 
coefficients and volume, but the drag coefficients seem to correlate with Froude numbers. We 
define the Froude number in dimensional terms as: 

𝐹𝑟 =
𝑉2

𝑔𝑟0
, (1.7) 

in this case, in dimensionless quantities, the Froude number coincides with the squared value 
of the translational velocity. The toroidal bubble velocity changes as it moves therefore, to 
compare different experiments, the Froude numbers are calculated at the same distance from 
the nozzle. The Froude number in figure 4(b) was calculated by (1.7) at the reference point. 

  



 
Figure 4. Drag coefficient at corresponding bubble volumes (a) and Froude numbers (b). 

6. Conclusion 
The ascent of toroidal bubbles is studied for various values of the initial parameters: vol-

ume, radius, and circulation. Toroidal bubbles were created by injecting a jet of air vertically 
into water. The reference point was set at a distance of 15 radii of the sphere, the volume of 
which is equal to the toroidal bubble volume. It is shown that in this case the dependence of 
the torus radius on time without taking into account the drag force lies above the experi-
mental points. On a dimensionless time fragment from 0 to 25, the average value of the rela-
tive deviation grows to 8-9% and remains constant further. The statistics were collected from 
measurements of the parameters of more than 100 toroidal bubbles. 

A theoretical model was tested, where it is assumed that, in addition to the buoyancy 
force, a drag force acts on the toroidal bubble. Taking into account the drag force with greater 
accuracy allows the theoretical calculation to be consistent with the experimental data. The 
average relative deviation at times 0 to 25 does not exceed 4% and is 0.5-1% further. Thus, we 
can conclude that, in addition to the buoyancy force, a drag force acts on the toroidal bubble, 
and it should be taken into account in tasks requiring high accuracy. 

The drag coefficient used in the calculations was determined by searching for the best 
agreement between the calculation and experiment using the least squares method. No clear 
correlation between drag coefficient and bubble volume is shown. However, it can be seen 
that an increase in the Froude numbers leads to a decrease in the drag coefficients. 
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